Testing the Permutation Space Based Geometric Differential Evolution on the Job-Shop Scheduling Problem
نویسندگان
چکیده
From within the variety of research that has been devoted to the adaptation of Differential Evolution to the solution of problems dealing with permutation variables, the Geometric Differential Evolution algorithm appears to be a very promising strategy. This approach is based on a geometric interpretation of the evolutionary operators and has been specifically proposed for combinatorial optimization. Such an approach is adopted in this paper, in order to evaluate its efficiency on a challenging class of combinatorial optimization problems: the Job-Shop Scheduling Problem. This algorithm is implemented and tested on a selection of instances normally adopted in the specialized literature. The results obtained by this approach are compared with respect to those generated by a classical DE implementation (using Random Keys encoding for the decision variables). Our computational experiments reveal that, although Geometric Differential Evolution performs (globally) as well as classical DE, it is not really able to significantly improve its performance.
منابع مشابه
Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملA cloud-based simulated annealing algorithm for order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling
Make-to-order is a production strategy in which manufacturing starts only after a customer's order is received; in other words, it is a pull-type supply chain operation since manufacturing is carried out as soon as the demand is confirmed. This paper studies the order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling with MTO production strategy, the objec...
متن کاملSolving the flexible job shop problem by hybrid metaheuristics-based multiagent model
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based c...
متن کاملOptimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملA Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs
This paper investigates the problem of just-in-time permutation flow shop scheduling with limited buffers and linear job deterioration in an uncertain environment. The fuzzy set theory is applied to describe this situation. A novel mixed-integer nonlinear program is presented to minimize the weighted sum of fuzzy earliness and tardiness penalties. Due to the computational complexities, the prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010